III B. Tech – II Semester

(20ME6648) AUTOTRONICS AND SAFETY

Int. Marks	Ext. Marks	Total Marks	

30 70 100

L T P C 3 1 - 4

Pre-Requisites: Basic automobile engineering

Course Objectives:

The Students will acquire the knowledge:

- To interpret the fundamentals of Automotive Electronics.
- To discuss the concepts of electronic Fuel Injection & Ignition System.
- To outline the working principles of automotive Electricals.
- To discuss the various considerations in comfort & Safety.
- To outline the system approach to control & instrumentation.

UNIT-I: Fundamentals of Automotive Electronics:

Microprocessor and micro Computer applications in automobiles; components for engine management System; electronic management of chassis system; vehicle motion control; electronic panel meters. Sensors & Actuators: Introduction; Basic sensor arrangement; Types of Sensors such as oxygen sensors, Crank angle position sensors, fuel metering/vehicle speed sensors and detonation sensors, altitude sensors, flow Sensors, throttle position sensors, solenoids, stepper motors, relays.

UNIT-II: Electronic Fuel Injection & Ignition System:

Introduction; feedback carburetor system; throttle body injection and multi point fuel injection System; injection system controls; advantage of electronic ignition systems; types of solid state system and their principle of operation; electronic spark timing. Digital Engine Control System: Open loop and closed loop control system; engine cooling and warm-up control; acceleration, deceleration and idle speed control; integrated engine control system; exhaust emission control engineering; on-board diagnostics; future automotive electronic systems.

UNIT-III: Automotive Electricals:

Batteries; starter motor & drive mechanism; D.C. generator and alternator; regulation for charging; lighting design; dashboard instruments; horn, warning system and safety devices.

UNIT-IV: Comfort & Safety:

Seats, mirrors and sun roofs; central locking and electronic Windows; cruise control; in-car multimedia; security; airbag and belt tensioners; other safety and comfort systems; new developments.

UNIT-V: The system approach to control &instrumentation:

Fundamentals, electronic components and circuits, digital electronics, microcomputer instrumentation and control, sensors and actuators, digital engine control systems, vehicle motion control, automotive instrumentation and telematics, new developments. Electromagnetic Interference Suppression: Electromagnetic compatibility Electronic dash board instruments - Onboard diagnosis system. Security and warning system.

Course Outcomes:

After successful completion of the course, the students will be able to:

S. No	Course Outcome					
1.	Illustrate the concepts of fundamentals of Automotive Electronics.	L2				
2.	Explain the concepts of electronic Fuel Injection & Ignition System.	L2				
3.	Summarize the working principles of automotive Electricals.	L2				
4.	Describe the various considerations in comfort & Safety.	L2				
5.	Outline the concepts of system approach to control & instrumentation.	L2				

Correlation of COs with POs& PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	2	1	1	1	2	2	2	2	2	3	2
CO2	2	2	1	1	1	1	1	1	2	2	2	1	2	2
CO3	2	2	2	2	3	1	1	1	1	2	2	1	3	1
CO4	2	2	1	1	1	1	1	2	1	2	2	2	3	2
CO5	2	2	1	1	1	1	1	1	1	2	2	2	3	2

Text Books

- 1. Ribbens, "Understanding Automotive Electronics", 7th Edition, Elsevier, Indian Reprint, 2013.
- 2. Tom Denton, "Automobile Electrical and Electronics Systems", Edward Arnold Publishers, 2000.
- 3. Barry Hollembeak, "Automotive Electricity, Electronics & Computer Controls", Delmar Publishers, 2001.
- 4. Richard K. Dupuy "Fuel System and Emission controls", Check Chart Publication, 2000.
- 5. Ronald. K. Jurgon, "Automotive Electronics Handbook", McGraw-Hill, 1999.

References:

- 1. 1.Automotive Electronics Handbook, Ronald K. Jurgen, McGraw Hill Publishing Co., ISBN 0-07-034453-1.
- 2. Automotive Electricity and Electronics, Al Santini, Delmar Publishers, NY, ISBN 0-8273-6743-0.
- 3. Automobile Electrical & Electronic Equipments, Young, Griffitns, Butterworth Publication, London.
- 4. Understanding Automotive Electronics, Bechfold, SAE 199