III B. Tech – II Semester (20ME6110) THEORY OF MACHINES LAB

Int. Marks Ext. Marks Total Marks

3

1.5

15 35 50

Pre-Requisites: Theory of machines

List of Experiments:

- 1. To determine whirling speed of shaft theoretically and experimentally.
- 2. To determine the position of sleeve against controlling force and speed of a Hartnell governor and to plot the characteristic curve of radius of rotation.
- 3. To analyse the motion of a motorized gyroscope when the couple is applied along its spin axis.
- 4. To determine the frequency of undamped free vibration of an equivalent spring mass system.
- 5. To determine the frequency of damped force vibration of a spring mass system
- 6. To study the static and dynamic balancing using rigid blocks.
- 7. To find the moment of inertia of a flywheel
- 8. To plot follower displacement vs cam rotation for various Cam Follower systems.
- 9. To plot slider displacement, velocity and acceleration against crank rotation for single slider crank mechanism/Four bar mechanism
- 10. To find coefficient of friction between belt and pulley.
- 11. To study simple and compound screw jack and determine the mechanical advantage , velocity ratio and efficiency
- 12. To study various types of gears- Spur, Helical, Worm and Bevel Gears

Course Outcomes:

After successful completion of the course, the students will be able to:

S. No	Course Outcome							
1.	To determine whirling speed of shaft.	L2						
2.	To determine the position of sleeve against controlling force and speed of a Hartnell governor.	L2						
3.	To determine the frequency of damped force vibration of a spring mass system	L4						
4.	To find coefficient of friction between belt and pulley.	L4						

Correlation of COs with POs& PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	0	0	3	1	0	3	3	3	3	3	2
CO2	3	2	3	0	0	3	1	0	3	3	3	3	2	2
CO3	3	2	3	0	0	3	1	0	3	3	3	3	3	2
CO4	3	2	3	0	0	3	1	0	3	3	3	3	3	1