II B. Tech – I Semester (20MA1001) NUMERICAL TECHNIQUES AND PARTIAL DIFFERENTIAL EQUATIONS

Int. Marks	Ext. Marks	Total Marks	L	Т	Р	С
30	70	100	3	-	-	3
Dro Doquis	itos.					

Pre-Requisites:

Learning Objectives:

- The course is designed to equip the students with necessary mathematical skills and techniques that are essential for an engineering course.
- The skills derived from the course will help the student from a necessary base to develop analytic and design concepts.

UNIT-I: Iterative methods:

Introduction – Bisection method – Secant method – Method of false position – Iteration method – Newton-Raphson method

UNIT-II: Interpolation:

Introduction– Finite differences – Forward differences – Backward differences – Central differences – Relations between operators – Newton's forward and backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula

UNIT-III: Numerical integration and solution of ordinary differential equations:

Trapezoidal rule – Simpson's 1/3rd and 3/8th rule – Solution of ordinary differential equations by Taylor's series – Picard's method of successive approximations – Euler's method – Runge-Kutta method (second and fourth order).

UNIT-IV: PDE of first order:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

UNIT-V: Linear PDE of higher order and its Applications:

Solutions of Homogeneous linear partial differential equations of higher order. Method of separation of variables, Classification of second order partial differential equations

Applications of PDE: Application of PDE to one-dimensional wave, heat and Two- dimensional Laplace's equation in cartesian coordinates.

Course Outcomes:

After successful completion of the course, the students will be able to:

	COURSE OUTCOMES					
CO1	Determine the numerical solution of the algebraic and transcendental equations.					
CO2	Determine interpolation techniques for data analysis.					
CO3	Determining the numerical solutions of the ordinary differential equations.					
CO4	Develop the ability to form partial differential equations and solve the partial differential equations of first order.					
CO5	Identify / Classify and Solve the Partial differential equations of second order and higher order.	1, 2, 3				

Correlation of COs with POs& PSOs:

С	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3	-	3	-	-	-	-	2	-	-	1	1	-
2	2	2	-	2	-	-	-	-	2	-	-	1	1	-
3	2	3	-	-	-	-	-	-	-	-	-	1	1	-
4	2	2	-	1	-	-	-	-	-	-	-	1	1	-
5	1	2	-	1	-	-	-	-	-	-	-	1	1	-

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. B.V.Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books

- 1. Advanced Engineering Mathematics: Erwin Kreyszig, Wiley India Edition.
- 2. Advanced Engineering Mathematics: Michael Greenberg, Pearson.

Web Link:

- https://nptel.ac.in/courses/111/107/111107105/
- https://nptel.ac.in/courses/111/103/111103021/