I Year II Semester		L	Т	Р	С	
17PH201		3	1	0	3	
	ENGINEERING PHYSICS					

OBJECTIVES:

Physics curriculum which is reoriented to the needs of circuital branches of graduate engineering courses is designed to:

- 1. Impart knowledge of physical optics phenomenon like interference, diffraction and polarization involving required to design instruments with higher resolution.
- 2. Teach concepts of coherent sources, its realization and utility optical instrumentation.
- 3. Tap the simple harmonic motion and its adaptability for improved acoustic quality of concert hall.
- 4. To impart the knowledge of materials with characteristic utility in appliances.

UNIT-I

INTERFERENCE: Introduction- Principle of superposition- Coherent sources-Interference in thin films by reflection- Newton rings – Principle and working of Michelson Interferometers.

UNIT-II

DIFFRACTION: Introduction- Fraunhofer diffraction at single slit- Diffraction at Circular aperture- Grating equation- Resolving power of Grating, Telescope and microscopes.

POLARIZATION: Introduction- Methods for production of polarized light- Nicol's prism- Quarter wave plate- Half wave plate-Polarimeter.

UNIT-III

LASERS: Introduction- Characteristics of LASER- Basic principle of LASERs-Einstein theory of LASERs- Population inversion- He-Ne Lasers

FIBER OPTICS: Introduction- Construction and working principle of optical fibre-Acceptance angle- Numerical aperture.

UNIT-IV

ACOUSTICS: Introduction- Reverberation, Reverberation time- Sabine's formula-Acoustics of concert hall.

ULTRASOICS: Introduction- Production of Ultrasonics by Magnetostriction and piezoelectric method- Applications of Ultrasonics.

UNIT-V

CRYSTALLOGRAPHY: Introduction- Basis and lattices- Crystal systems-Bravais lattices- Crystal structures of simple cubic crystal (SCC), Body centered cubic crystal (BCC) and Face centered cubic crystal (FCC).

X-RAY DIFFRACTION: Crystal planes- Miller Indices- Separation between successive (hkl) planes- Bragg's law.

UNIT-VI

MAGNETIC MATERIALS: Basic definition-Origin of magnetic momentum-Classification of magnetic materials- Hysteresis loop- Soft & Hard magnetic materials.

NUCLEAR PHYSICS: Introduction- Stability of Nuclei, Mass defect- Nuclear Fission, Nuclear Fusion, Nuclear reactor.

OUTCOME: Construction and working principles of LASER and Optical fiber are learnt. Study of acoustics crystallography, magnetic and superconducting materials enhances the utility aspects of the materials

Text Books

- 1. A text book of engineering physics by Dr. M. N. Avadhanulu and Dr. P.G. KshiraSagar, S. Chand and company Ltd.
- 2. Solid state physics by A.J. Dekker, McMillan Publishers Engneering Physics by D.K. Battacharya and PoonamTandon, Oxford press.

Reference Books

- 1. Applied Physics by P.K. Palanisamy, Scitech Publishers.
- 2. Engineering Physics by Armugham, Anuradha Publication.