III B.Tech – I Semester (20EE5640) ELECTRIC VEHICLE BATTERIES AND CHARGING SYSTEMS

Int. Marks Ext. Marks Total Marks

30 70 100

L T P C

4 - - 4

Pre-Requisites: DC Machines and Transformers, Synchronous and Asynchronous Machines.

Course Objectives

- Understand the importance of batteries in electric vehicles
- Demonstrate various technical parameters of batteries and battery packs
- Summarize battery management techniques

UNIT-I: Energy Storage System

Batteries: Lead Acid Battery, Nickel based batteries, Sodium based batteries, Lithium based batteries–Li-ion & Li-poly, Metal Air Battery, Zine Chloride battery; Ultra capacitors; Flywheel Energy Storage System; Hydraulic Energy Storage System; Comparison of different Energy Storage System.

UNIT–II: Battery Characteristics and Parameters

Cells and Batteries- conversion of chemical energy to electrical energy- Battery Specifications: Variables to characterize battery operating conditions and Specifications to characterize battery nominal and maximum characteristics; Efficiency of batteries; Electrical parameters, Heat generation- Battery design-Performance criteria for Electric vehicle batteries- Vehicle propulsion factors- Power and energy requirements of batteries- Meeting battery performance criteria- setting new targets for battery performance.

UNIT–III: Battery Modelling

General approach to modelling batteries, simulation model of a rechargeable Li-ion battery, simulation model of a rechargeableNiCd battery, Parameterization of the NiCd battery model.

UNIT-IV: Battery Pack and Battery Management System

Selection of battery for EVs & HEVs, Traction Battery Pack design, Requirement of Battery Monitoring, Battery State of Charge Estimation methods, Battery Cell equalization problem, thermal control, protection interface, SOC Estimation, Energy & Power estimation, Battery thermal management system, Battery Management System: Definition, Parts: Power Module, Battery, DC/DC Converter, load, communication channel, Battery Pack Safety, Battery Standards & Tests.

UNIT-V: Mobility and Connectors

Connectors- Types of EV charging connector, North American EV Plug Standards, DC Fast Charge EV Plug Standards in North America, CCS (Combined Charging System), CHAdeMO, Tesla, European EV Plug Standards.

Course Outcomes:

After successful completion of the course, the students will be able to:

S.No	Course Outcome							
1.	Distinguish between various types of batteries used for EV applications							
2.	Elaborate various technical parameters of batteries	L2						
3.	Model batteries in simulated environment	L5						
4.	Illustrate various battery management issues in electric vehicles	L3						
5.	Demonstrate various connectors and charging systems used in electric vehicles	L3						

Raghu Engineering College (A)

Correlation of COs with POs& PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3	1					2				2	
CO2			3	1					2				2	
CO3			3	1					2				2	
CO4			3	1					2				2	
CO5			3	1					2				2	

Text Books:

- 1. Emadi, A. (Ed.), Miller, J., Ehsani, M., "Vehicular Electric Power Systems" Boca Raton, CRC Press, 2003.
- 2. Husain, I. "Electric and Hybrid Vehicles" Boca Raton, CRC Press, 2010.

Reference Books:

- 1. Tariq Muneer and Irene Illescas García, "The automobile, In Electric Vehicles: Prospects and Challenges", Elsevier, 2017.
- 2. Sheldon S. Williamson, "Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles", Springer, 2013