III B.Tech – I Semester (20EE5008) POWER ELECTRONICS

Int. Marks	Ext. Marks	Total Marks
------------	------------	--------------------

30 70 100

Pre-Requisites: Analog Electronics, Electrical Circuit Analysis, Calculus

Course Objectives

- To study the characteristics of various power semiconductor devices and gate drive circuits.
- To understand the operation of single-phase full-wave converters and analyze harmonics in the input current.
- To study the operation of three phase full–wave converters.
- To understand the operation of different types of DC-DC converters.
- To understand the operation of inverters and the application of PWM techniques for voltage control and harmonic mitigation and to analyze the operation of regulators.

UNIT-I: POWER SEMICONDUCTOR DEVICES

Basic Theory of Operation - Static Characteristics-Two Transistors analogy -Turn on and Turn off Methods -Methods of SCR Triggering - Dynamic & Gate Characteristics of SCR - Series and Parallel Operation -Snubber circuit -Switching Characteristics of Power MOSFET and IGBT

UNIT-II: Single Phase AC-DC Converters

Single Phase half wave controlled rectifiers with R and RL loads, freewheeling diode - Single Phase fully controlled bridge converter with R, RL, RLE loads - Continuous and Discontinuous conduction - Effect of source inductance Expression for output voltages – Single Phase semi Converter with R, RL, RLE loads – Continuous and Discontinuous conduction - Harmonic Analysis - Single Phase Dual Converters - Numerical Problems

UNIT-III: Three Phase AC-DC Converters

Three Phase half wave Rectifier with R and RL load -Three Phase fully controlled rectifier with R and RL load - Three Phase semi converter with R and RL load - Expression for Output Voltage - Harmonic Analysis - Three Phase Dual Converters - Numerical Problems.

UNIT-IV: DC-DC CONVERTERS

Analysis of Buck, boost, buck-boost converters in Continuous Conduction Mode (CCM) and Discontinuous Conduction Modes (DCM) – Output voltage equations using the volt-sec balance in CCM & DCM- output voltage ripple & inductor current ripple for CCM only – Principle operation of forward and flyback converters in CCM.

UNIT-V: DC-AC CONVERTERS AND AC-AC CONVERTERS

1- phase half-bridge and full-bridge inverters with R and RL loads – Unipolar and bipolar switching-Quasisquare wave pulse width modulation-3- phase square wave inverters – 120° conduction and 180° conduction modes of operation – Sinusoidal pulse width modulation –single-phase Current Source Inverter (CSI)- singlephase AC-AC voltage regulator.

Р

С

3

LT

3

Course Outcomes:

After successful completion of the course, the students will be able to:

S.No	Course Outcome			
1.	Explain the characteristics of various power semiconductor devices and analyze the static and dynamic characteristics of SCR and design firing circuits for SCR			
2.	Explain the operation of single-phase full-wave converters and analyze harmonics in the input current			
3.	Explain the operation of three-phase full-wave converters.			
4.	Analyze the operation of different types of DC-DC converters			
5.	Explain the operation of inverters and application of PWM techniques for voltage control and harmonic mitigation and analyze the operation of AC-AC regulators.	L2		

Correlation of COs with POs& PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1										3	
CO2	2	2	1										3	
CO3	1	3	1	1									3	
CO4	1	3	2	1									3	
CO5	1	3	1	2									3	

Text Books:

- 1. Power Electronics: Converters, Applications and Design by Ned Mohan, Tore M Undeland, William P Robbins, John Wiley & Sons
- 2. Power Electronics: Circuits, Devices and Applications by M. H. Rashid, Prentice Hall of India, 2nd edition, 1998.
- 3. Power Electronics: Essentials & Applications by L.Umanand, Wiley, Pvt. Limited, India, 2009.

Reference Books:

- 1. Elements of Power Electronics–Philip T.Krein.oxford.
- 2. Power Electronics by P.S.Bhimbra, Khanna Publishers.
- 3. Thyristorised Power Controllers by G. K. Dubey, S. R. Doradla, A. Joshi and R. M. K.Sinha, New Age International (P) Limited Publishers, 1996
- 4. Power Electronics: by Daniel W.Hart, Mc Graw Hill.