II B.Tech – II Semester (20EE4106) CONTROL SYSTEMS LAB

L

Т

Р

3

С

1.5

15 35 50

Pre-Requisites: Control Systems

Course Objectives: Students are supposed

- To operate and analyse the performance characteristics of basic control system components such as magnetic amplifiers, D.C. servo motors, A.C. Servo motors, synchro's and potentiometer.
- To operate and analyse the effects of P, PI, PD and PID controller gains on a process and suggest the appropriate controller to attain the desired output.
- To express the knowledge of MATLAB-SIMULINK to analyse dynamical system response by applying different input signals.
- To design lag, lead and lag-lead compensators for the dynamical systems to meet the desired specification using the MATLAB Programming

S.No List of Experiments

- 1. Time response of typical Second order system
- 2. Characteristics of Synchro's
- 3. Design of Lag, Lead & Lag-Lead compensator using MATLAB Program
- 4. Characteristics of Magnetic amplifiers
- 5. Conversion of Transfer function model to state space model and vice-versa
- 6. Characteristics of AC servo motor
- 7. Characteristics of DC servo motor
- 8. Temperature controller using PID
- 9. DC position control system
- 10. Transfer function of DC motor
- 11. LEAD/LAG/LEAD-LAG network simulator
- 12. PID Controlled DC Motor via State Space Approach using MATLAB-Simulink

Course Outcomes:

After successful completion of the course, the students will be able to:

S.No	Course Outcome									
1.	To operate and analyse the working and performance characteristics of industrial applied control components									
2.	To extract time/frequency response of a second order dynamical system using MATLAB/Simulink and analyse the stability.	L4								
3.	To transform dynamical system transfer function model to state-space model and vice- versa.	L4								
4.	To design the suitable controller/compensator for the second order dynamical system to improve the stability and performance using a MATLAB programming.	L6								

Raghu Engineering College (A)

Correlation of COs with POs& PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-	3	-	-	-	-	1	-	-	-	1	2
CO2	1	3	-	-	2	-	-	-	-	-	-	-	1	2
CO3	1	3	-	-	2	-	-	-	-	-	-	-	1	2
CO4	1	-	3	-	2	-	-	-	-	-	-	-	1	2

Text Books:

- 1. Control Systems principles and design, M. Gopal, Tata McGraw Hill education Pvt Ltd., 4thEdition.
- 2. Control system components, M.D.Desai, PHI Learning Books

Reference Books:

- 1. MATLAB Programming for Engineers, Stephen J. Chapman, Book ware Companion Series.
- 2. Automatic control systems, Benjamin C. Kuo, Farid Golnaraghi. Prentice Hall of India, 2ndEdition.