II B.Tech – I Semester (20EE3004) ANALOG ELECTRONICS

Int. Marks Ext. Marks Total Marks

30 70 100

L T P C 3 - - 3

Pre-Requisites: Applied Physics

Course Objectives:

To learn basic concepts of semiconductor physics and working of Diode with its applications

- To know the basics of BJT, FET, MOSFET and other transistors
- To acquire the knowledge of the biasing and stabilization concepts of BJT and FET
- To understand the working, analysis and design of transistor amplifier circuits at low frequencies
- To design and analyze different Multivibrator circuits.

UNIT-I: PN Junction Diode

Semiconductors and Metals – Classification using Energy gap, Mobility and Conductivity, Intrinsic and Extrinsic Semiconductors, Charge Densities in Semiconductors, Fermi level in semiconductors, Drift and Diffusion Currents. Formation of P-N Junction, Energy Band structure of PN Junction Diode, Diode Current Equation, V-I Characteristics of Diode, Temperature Dependence on V-I Characteristics, Diode Resistances, Diffusion and Transition Capacitances. Diode Applications – Half-Wave and Full-Wave Rectifiers, Clippers and clampers

UNIT-II: Transistors

Bipolar Junction Transistor – Types, Symbols and Operation, Transistor Current Components, Transistor Equation, Relation among α , β and γ , Transistor as an Amplifier, Transistor Configurations and Characteristics – CB, CE and CC, Early effect, Transistor as a switch, Transistors witching times, Punch/Reach through, Ebers-Moll Model, FET – Construction and operation of N- and P-channel FETs, characteristic parameters and I_{DSS}, MOSFET – Enhancement and Depletion type, Photo Transistor, UJT

UNIT–III: Biasing and Stabilization

BJT Biasing: Need for Biasing, Operating Point, Load Line Analysis – DC and AC Load Lines, Stability factors S, S' and S", Biasing methods – Fixed bias, Collector-to-base bias and Self bias, Bias Compensation Thermistor, Sensistor, Diode Compensation, Thermal Runaway, Thermal Stability, heat sinks. FET Biasing: Fixed method, self-bias method and voltage divider method, Comparison of BJT and FET, Comparison between JFET and MOSFET

UNIT-IV: Small Signal Low Frequency Transistor Amplifier models

BJT: Two port network, Transistor hybrid model, determination of h-parameters, conversion of h-parameters, generalized analysis of transistor amplifier model using h-parameters, Analysis of CB,CE and CC amplifiers using exact and approximate analysis, comparison of transistor amplifiers. FET: Generalized analysis of small signal model of FET, Analysis of CG, CS and CD amplifiers, comparison of FET amplifiers.

UNIT–V: Multivibrators

Bistable Multivibrator – Analysis and Design of Fixed Bias, Self-Bias Bistable Multivibrator, Collector Catching Diodes, Commutating Capacitors, Triggering of Binary Circuits, Emitter Coupled Bistable Multivibrator (Schmitt Trigger). Monostable Multivibrator – Analysis and Design of Collector Coupled Monostable Multivibrator, Triggering of Mono stable Multivibrator, Applications of Monostable

Raghu Engineering College (A)

Multivibrator. A stable Multivibrator–Analysis and Design of Collector Coupled A stable Multivibrator, Application of A stable Multivibrator as a Voltage to Frequency Converter.

Course Outcomes:

After successful completion of the course, the students will be able to:

S.No	Course Outcome										
1.	Apply the basic concepts of semiconductor and to understand the formation and characteristics of PN Junction Diode with relevant applications	L3									
2.	Understand the construction, working and characteristics of BJT, FET, MOSFET and other transistors										
3.	Know the need of various biasing techniques for BJT and FET, and analyze stabilization concepts with necessary expressions.										
4.	Analyze small signal, low frequency transistor amplifier circuits using BJT and FET indifferent configurations.	L4									
5.	Design and analyze different multi vibrator circuits.	L6									

Correlation of COs with POs& PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-	3	-
CO3	3	2	2	-	-	-	-	-	-	-	-	-	3	-
CO4	3	3	2	-	-	-	-	-	-	-	-	-	3	-
CO5	2	3	2	-	-	-	-	-	-	-	-	-	3	-

Text Books:

- 1. Electronic Devices and Circuits–Millman & Halkias, Tata McGraw Hill, Second Edition, 2007.
- 2. Electronic Devices and Circuits–S.Salivahanan, N.Suresh Kumar, McGraw Hill, Third Edition, 2010.
- 3. Pulse, Digital and Switching Waveforms J.Millman and H.Taub, McGraw Hill.

Reference Books:

- 1. Electronic Devices and Circuits Theory Robert L.Boylestad and Louis Nashelsky, Pearson/Prentice Hall, Tenth Edition, 2009.
- 2. Electronic Devices and Circuits K.LalKishore, BS Publications, Fourth Edition, 2016.
- 3. Pulse and Digital Circuits–A.Anand Kumar, PHI, 2005.