III B.Tech – II Semester (20EC6639) COGNITIVE RADIO (Honors)

Int. Marks	Ext. Marks	Total Marks	${f L}$	T	P	C
30	70	100	3	1	-	4

Pre-Requisites: Analog & Digital Communications

Course Objectives:

- To understand the evolving software defined radio and cognitive radio techniques and their essential functionalities.
- To study the basic architecture and standard for cognitive radio
- To understand the concept of spectrum sensing.
- To understand the physical, MAC and Network layer design of cognitive radio.
- To expose the student to evolving applications and advanced features of cognitive radio.

UNIT-I: INTRODUCTION TO SOFTWARE-DEFINED RADIO AND COGNITIVE RADIO:

Evolution of Software Defined Radio and Cognitive radio: goals, benefits, definitions, architectures, relations with other radios, issues, enabling technologies, radio frequency spectrum and regulations.

UNIT-II: COGNITIVE RADIO ARCHITECTURE

Cognition cycle – orient, plan, decide and act phases, Organization, SDR as a platform for Cognitive Radio – Hardware and Software Architectures, Overview of IEEE 802.22 standard for broadband wireless access in TV bands.

UNIT-III: SPECTRUM SENSING AND DYNAMIC SPECTRUM ACCESS:

Introduction – Primary user detection techniques – energy detection, feature detection, matched filtering, cooperative detection and other approaches, Fundamental Trade-offs in spectrum sensing, Spectrum Sharing Models of Dynamic Spectrum Access - Unlicensed and Licensed Spectrum Sharing, Fundamental Limits of Cognitive Radio.

UNIT-IV: MAC AND NETWORK LAYER DESIGN FOR COGNITIVE RADIO:

MAC for cognitive radios – Polling, ALOHA, slotted ALOHA, CSMA, CSMA / CA, Network layer design – routing in cognitive radios, flow control and error control techniques.

UNIT-V: ADVANCED TOPICS IN COGNITIVE RADIO:

Overview of security issues in cognitive radios, auction based spectrum markets in cognitive radio networks, public safety and cognitive radio, cognitive radio for Internet of Things.

Course Outcomes:

S. No	Course Outcome					
1	Understand the fundamental concepts of cognitive radio networks.					
2	Gain knowledge on the design principles of cognitive radio.	L3				
3	Design and implement algorithms for cognitive radio spectrum sensing and dynamic spectrum access.	L4				
4	Understand network layer design for cognitive radio	L2				
5	Apply the knowledge of advanced features of cognitive radio for real world applications.	L3				

Correlation of COs with POs & PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	-	ı	ı	ı	ı	-	-	ı	-	2	-
CO2	2	2	2	-	-	-	-	-	-	-	-	-	2	-
CO3	2	2	2	-	-	-	-	-	-	-	-	-	2	-
CO4	2	-	2	-	-	-	-	-	-	-	-	-	2	-
CO5	2	-	2	-	-	-	-	-	-	-	-	2	2	-

Text Books:

- 1. Alexander M. Wyglinski, Maziar Nekovee, Thomas Hou, —Cognitive Radio Communications and Networksl, Academic Press, Elsevier, 2010. (Unit I to IV)
- 2. Huseyin Arslan (Ed.), —Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems, Springer, 2007. (Unit V)

Reference Books:

- 1. Bruce Fette, —Cognitive Radio Technology, Newnes, 2006.
- 2. Kwang-Cheng Chen, Ramjee Prasad, Cognitive Radio Networksll, John Wiley and Sons, 2009.
- 3. Ezio Biglieri, Professor Andrea J. Goldsmith, Dr Larry J. Greenstein, Narayan B. Mandayam, H. Vincent Poor, —Principles of Cognitive Radiol, Cambridge University Press, 2012.