II B.Tech – II Semester (20EC4631) EMI / EMC (Honors)

 Int. Marks
 Ext. Marks
 Total Marks

 30
 70
 100
 3
 1
 4

Pre-Requisites: Electro Magnetic Waves and Transmission Lines

Course Objectives:

- To understand the basic concepts of natural and nuclear sources of EMI / EMC
- To estimate the EMI from apparatus, circuits and open area test sites.
- To discuss the measuring techniques of the electromagnetic Radiations and interferences.
- To know the concepts of ESD, Grounding, shielding, bonding and EMI filters.
- To identify EMC Cables, connectors and components with EMC standards.

UNIT-I:

Natural and nuclear sources of EMI / EMC

Introduction, Electromagnetic environment, History, Concepts, Practical experiences and concerns, frequency spectrum conservations. An overview of EMI / EMC, Natural and Nuclear sources of EMI.

UNIT-II:

EMI from apparatus, circuits and open area test sites

Electromagnetic emissions, noise from relays and switches, non-linarites in circuits, passive inter modulation, cross talk in transmission lines, transients in power supply lines, electromagnetic interference (EMI). Open area test sites and measurements.

UNIT-III:

Radiated and conducted interference measurements

Anechoic chamber, TEM cell, GH TEM Cell, characterization of conduction currents / voltages, conducted EM noise on power lines, conducted EMI from equipment, Immunity to conducted EMI detectors and measurements.

UNIT-IV:

ESD, Grounding, shielding, bonding and EMI filters

Principles and types of grounding, shielding and bonding, characterization of filters, power lines filter designs. ESD, Electrical fast transients / bursts, electrical surges.

UNIT-V:

Cables, Connectors, Components & EMC standards

Introduction, EMI suppression cables, EMC connectors, EMC gaskets, Isolation transformers, opto-isolators, Transient and Surge Suppression Devices.

EMC standards – National / International: Introduction, Standards for EMI and EMC, MIL-Standards, IEEE/ANSI standards, CISPR/IEC standards, FCC regulations, Euro norms, British Standards, EMI/EMC standards in JAPAN, Conclusions.

Course Outcomes:

After successful completion of the course, the students can be able to

S.No	Course Outcome	BTL
1	Understand the root causes of EMI and its sources.	L2
2	Analyse the effects of EMI from apparatus, circuits and open area test sites.	L4
3	Apply different measurement techniques of EMI (for conducted and normal) and analyse their influences in detail	L3
4	Discuss different compatibility techniques to reduce EMI	L2
5	Remember various standards followed across the world in the fields of EMI/EMC.	L1

Correlation of COs with POs& PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	1	-	-	-	-	-	-	-	-	-	-	1	2	-
CO 2	2	-	1	1	-	1	1	-	-	-	-	1	2	-
CO 3	2	2	1	2	-	2	1	-	-	-	-	1	2	-
CO 4	1	1	-	-	-	1	1	-	-	-	-	1	2	-
CO 5	-	-	-	1	-	2	1	-	-	-	-	2	2	-

Text Books:

- 1. Engineering Electromagnetic Compatibility Prasad V. Kodali, S. Chand & Co, 2000.
- 2. Introduction to Electromagnetic compatibility Clayton R. Paul, Wiley & Sons, 1992.

Reference Books:

- 1. Principles of Electromagnetic Compatibility B. Keiser, Artech house, Third Edition, 1986.
- 2. Noise Reduction Techniques in Electronic Systems Henry W. Ott, John Wiley and Sons, 1988.
- 3. EMP Radiation and Protective techniques L. W. Ricketts, Jack E. Bridges, J. Milett, John Wiley and sons, 1976.