II B.Tech - I Semester (20EC3003) NETWORK ANALYSIS

Int. Marks Ext. Marks Total Marks

30 70 100

Pre-Requisites: Physics

Course Objectives:

- Summarize the properties of electrical elements and networks
- Compute network variables with the help of various analytical methods
- Evaluate the frequency response of electric networks
- Select appropriate network theorems to analyze electric circuits.

UNIT-I:

Introduction to Electrical Circuits: Basic electrical components and sources, Network reduction techniques, Sourcetransformation, Nodal analysis, and Mesh analysis, Principle of duality

UNIT-II:

Sinusoidal analysis on A.C Systems: AC fundamentals, Concept of phasor and powers, Steady-state analysis of AC circuits R, RLand RLC circuits

UNIT-III: Coupled Circuits and Resonance: Self and Mutual inductance, analysis of coupled circuits, Dot rule, conductively coupledequivalent circuits. Series and Parallel resonance.

Unit – IV: Network Theorems and Two port network

Superposition, Thevenin's, Norton's, Milliman's, Reciprocity, Max Power Transfer, Substitution, - problem solving using dependent sources also

Two port network parameters – Z, Y, ABCD, Hybrid parameters and their relations.

Unit – V: Transients

Transient response of R-L, R-C, R-L-C circuits for DC, Pulse and AC excitations, Solution using classical methods only

Course Outcomes:

After successful completion of the course, the students can be able to:

S.No	Course Outcome								
1	Study the concepts of passive elements, types of sources and various network reduction techniques	L2							
2	Understand the behaviour of RLC networks for sinusoidal excitations	L1							
3	Understand the applications of network theorems for analysis of electrical networks	L1							
4	Study the concept of magnetic coupled circuits	L2							
5	Find the transient response of electrical networks for different types of excitations	L2							

LT

3

С

3

Р

Correlation of COs with POs& PSOs:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P010	PO11	P012	PSO1	PSO2
CO1	3	3	-	-	-	-	-	-	-	-	-	•	2	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	3	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-	3	-
CO4	3	3	-	-	-	-	-	-	-	-	-	-	3	-

Text Books:

- 1. Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley, McGraw HillCompany, 6th edition
- 2. Fundamentals of Electrical Circuits by Charles K. Alexander and MathewN.O. Sadiku, McGraw Hill Education (India)

Reference Books:

- 1. Network Analysis: Van Valkenburg; Prentice-Hall of India Private Ltd.
- 2. Fundamentals of Electrical Circuits by Charles K. Alexander and Mathew N.O. Sadiku, McGraw Hill Education (India)
- 3. Electrical Circuit Analysis-2 by A Sudhakar, Shyammohan S Palli, McGraw HillEducation (India)
- 4. Circuit Theory (Analysis and Synthesis) by A.Chakrabarthi, DhanpatRai&Co.
- 5. Electric Circuits by David A. Bell, Oxford publications
- 6. Electric Circuits- (Schaum's outlines) by Mahmood Nahvi& Joseph Edminister, Adapted by K. Uma Rao, 5th Edition McGraw Hill