II B.Tech - I Semester (20EC3002) DIGITAL ELECTRONICS

 Int. Marks
 Ext. Marks
 Total Marks

 30
 70
 100
 3 - - 3

Pre-Requisites: None

Course Objectives:

- To understand the binary number system & codes and various Boolean theorems to perform logical operations.
- To learn the minimization techniques and design gate level combinational logic circuits
- To realize combinational logic circuits for ICs and understand the basics of PLDs
- To classify and design sequential logic circuits
- To categorize and analyse various Finite State Machines

UNIT-I: Review of Number Systems & Boolean Theorems

Review of Number Systems:Representation of numbers of different radix, conversation from one radix to another radix, r–1'scompliments and r's compliments of signed members, floating point representation, Gray code,4-bit codes – BCD, Excess-3,2421, 84-2-1 code etc., Error detection & correction codes – parity checking, even parity, odd parity, hamming code.

Boolean Theorems and Logic Operations: Boolean theorems, principle of complementation & duality, De-Morgan theorems. Logic operations; Basic logic operations – NOT, OR, AND, Universal Logic operations, EX-OR, EX-NOR operations, Standard SOP and POS Forms, NAND-NAND and NOR-NOR realizations, Realization of three level logic circuits. Study the pin diagram and obtain truth table for thefollowing relevant ICs 7400, 7402, 7404, 7408, 7432, 7486.

UNIT-II: Minimization Techniques & Combinational Logic circuit Designs

Minimization Techniques: Minimization and realization of switching functions using Boolean theorems, K-Map (up to 6variables) and tabular method (Quine-McCluskey method) with only four variables and single function.

Combinational Logic circuit Designs: Design of half adder, full adder, half subtractor, full subtractor, applications of full adders; 4-bitadder-subtractor circuit, BCD adder circuit, Excess 3 adder circuit and carry look-a-head adder, Carry select adder, Design code converts using Karnaugh method and draw the complete circuit diagrams.

UNIT-III: Combinational Logic Circuits using LSI & MSI

Design of encoder, decoder, multiplexer and de-multiplexers, Implementation of higher order circuits using lower order circuits. Realization of Boolean functions using decoders and multiplexers. Design of Priority encoder, 4-bit digital comparator and seven segment decoder Study the relevant ICs pin diagrams and their functions 7442, 7447, 7485, 74154. Introduction to PLDs: PROM, PAL, PLA -Basics structures, realization of Boolean functions, Programming table.

UNIT-IV: Sequential Circuits - I

Classification of sequential circuits (synchronous and asynchronous), operation of NAND &NOR latches and flip-flops; truth tables and excitation tables of RS flip-flop, JK flip-flop, Tflip-flop, D flip-flop with preset and clear terminals, Master-slave JK Flip-flop, Conversion from one flip-flop to another flip-flop. Design of registers - Buffer register, control buffer register, shift register, bi-directional shift register, universal shift register. Design of ripple counters, design of synchronous counters, Johnson counter, ring counter, Mod-N counter. Study the following relevant ICs and their relevant functions 7474, 7475, 7476, 7490, 7493, 74121.

UNIT-V: Sequential Circuits - II

Finite state machine; state diagrams, state tables, reduction of state tables. Analysis of clocked sequential circuits Mealy to Moore conversion and vice-versa. Realization of sequence generator, Design of Clocked Sequential Circuit to detect the given sequence (with overlapping or without overlapping). Real time example: Vending machine, Traffic light controller.

Course Outcomes:

After successful completion of the course, the students can be able to:

S.No	Course Outcome							
1	Understand number base conversions, Boolean algebra theorems, logic circuits							
	behaviour and error coding techniques	L2						
2	Realize and design combinational logic circuits using minimization techniques	L5						
3	Design and analyse various combinational logic circuits using ICs and define PLDs	L5						
4	Categorize and design sequential logic circuits	L5						
5	Classify, design and analyse Finite State Machines	L5						

Correlation of COs with POs& PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	-			-	-	-	-	-	-	2	-
CO2	2	3	2	-	•	•	•	•	-	-	-	-	3	-
CO3	2	3	2				•	•	-	-	-	-	3	
CO4	2	3	2	-		-	-	-	-	-	-	-	3	-
CO5	2	3	2	1	•	•	-	-	-	-	-	-	3	-

Text Books:

- 1. Digital Design–M. Morris Mano & Michael D.Ciletti, Prentice Hall of India, Fourth Edition, 2008.
- 2. Switching and Finite Automata Theory— Zvi Kohavi, Niraj K.Jha, Cambridge University Press, Third Edition, 2009.
- 3. Switching Theory and Logic Design—Hilland Peterson, John Wiley, Second Edition, 2012.

Reference Books:

- 1. Fundamentals of Logic Design—Charles H.Roth Jr, Jaico Publishers, 2006.
- 2. Digital Electronics-RS Sedha, S.Chand & company limited, 2010.
- 3. Switching Theory and Logic Design–A. Anand Kumar, Prentice Hall of India, 2016.
- 4. TTL74-Seriesdatabook.