I B. Tech. – I Semester (17MA101) Mathematical Methods (Common to all Branches)

С

3

L

3

Т

1

Р

Int. Marks Ext. Marks Total Marks

40 60 100

Pre-Requisites: None

Course Objectives:

- The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.
- The skills derived from the course will help the student from a necessary base to develop analytic and design concepts.

Syllabus:

UNIT-I: Differential equations of first order and first degree:Linear-Bernoulli-Exact-Reducible to exact Applications: Newton's Law of cooling-Law of natural growth and decay-Orthogonal trajectories- Electrical circuits- Chemical reactions.

UNIT-II: Linear differential equations of higher order:

Non-homogeneous equations of higher order with constant coefficients with RHS term of the type

 e^{ax} , sin *ax*, cos *ax*, polynomials in *x*, $e^{ax}V \square x \square$, $xV \square x \square$ - Method of Variation of parameters Applications: LCR circuit, Simple Harmonic motion.

UNIT III: Special functions:

Beta and Gamma functions- Properties - Relation between Beta and Gamma functions- Evaluation of improper integrals Applications: Evaluation of integrals

UNIT IV: Partial differentiation:

Introduction- Homogeneous function-Euler's theorem-Total derivative-Chain rule- -Taylor's and McLaurin's series expansion of Functions of two variables– Functional dependence- Jacobian Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints)

UNIT V: First order Partial differential equations:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions –solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations

UNIT VI: Higher order Partial differential equations:

Solutions of Linear Partial differential equations with constant coefficients, RHS term of the type $e^{ax+\Box by}$, $\sin \Box ax|by\Box$, $\cos \Box ax|by\Box$, $x^n y^n$ Classification of second order partial differential equations

Cours	Course Outcomes:						
COs	Course OutComes	BTL					
CO1	Develop the ability to solve linear differential equations of first order and use the						
	knowledge gain to certain engineering problems.						
CO2	Develop the ability to solve linear differential equations of higher order and use the						
	knowledge gain to certain engineering problems.						
CO3	Compute the improper integrals using Beta and Gamma functions	3					
CO4	Apply techniques of multivariable differential calculus to determine the extreme						
	and series expansions etc. of the functions of several variables						
CO5	Solving the first order Partial differential equations	3					
CO6	Identify/classify and solve the different types of partial differential equations of first order	3					
	and higher order						

CO – PO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	2	1	1	-	-	-	-	-	-	-	-	1
2	3	2	1	-	-	-	-	-	-	-	-	1
3	3	2	1	-	-	-	-	-	-	-	-	1
4	2	1	1	-	-	-	-	-	-	-	-	1
5	1	1	1	-	-	-	-	-	-	-	-	1
6	1	1	1	-	-	-	-	-	-	-	-	1

CO – PSO Mapping

СО	PSO1	PSO2	PSO3
1	1	-	-
2	1	-	-
3	1	-	-
4	1	-	-
5	1	-	-
6	1	-	-

Text Books:

- 1. B.S.Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. T.K.V.Iyengar, B.Krishna Gandhi, S.Ranganathan, M.V.S.S.N.Prasad, Engineering Mathematics (Volume-I), S Chand Publications

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India
- 2. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 3. Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press
- 4. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 5. Srimanta Pal, Subodh C.Bhunia, Engineering Mathematics, Oxford University Press.
- 6. Dass H.K., Rajnish Verma. Er., Higher Engineering Mathematics, S. Chand Co. Pvt. Ltd, Delhi.

