IV B.Tech – II Semester (17EC833) SATELLITE COMMUNICATIONS (Professional Elective-IV)

Int. Marks	Ext. Marks	Total Marks	L	Т	Р	С
40	60	100	4	-	-	3

Pre-Requisites: Electromagnetic Waves and Transmission Lines, Digital Communications, Antenna and Wave Propagation

Course Objectives:

- To introduce the fundamentals concepts and services of satellite communication.
- To provide them with a sound understanding of how a satellite communication system successfully transfers information from one earth station to another.
- To expose them to examples of applications and tradeoffs that typically occurs in satellite system design.

UNIT-I:

INTRODUCTION: Origin of Satellite Communications, Historical Back-ground, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.

ORBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital perturbations, Orbit determination, launches and launch vehicles, Orbital effects in communication systems performance.

UNIT-II:

SATELLITE SUBSYSTEMS: Attitude and orbit control system, telemetry, tracking, Command and monitoring, power systems, communication subsystems, Satellite antenna Equipment reliability and Space qualification.

UNIT-III:

SATELLITE LINK DESIGN: Basic transmission theory, system noise temperature and G/T ratio, Design of down links, up link design, Design of satellite links for specified C/N, System design example.

UNIT-IV:

MULTIPLE ACCESS: Frequency division multiple access (FDMA) Intermodulation, Calculation of C/N. Time division Multiple Access (TDMA) Frame structure, Examples. Satellite Switched TDMA Onboard processing, DAMA, Code Division Multiple access (CDMA),Spread spectrum transmission and reception.

UNIT-V:

EARTH STATION TECHNOLOGY: Introduction, Transmitters, Receivers, Antennas, Tracking systems, Terrestrial interface, Primary power test methods.

LOW EARTH ORBIT AND GEO-STATIONARY SATELLITE SYSTEMS[1] : Orbit consideration, coverage and frequency considerations, Delay & Throughput considerations, System considerations, Operational NGSO constellation Designs

UNIT-VI:

SATELLITE NAVIGATION & THE GLOBAL POSITIONING SYSTEM: Radio and Satellite Navigation, GPS Position Location principles, GPS Receivers and codes, Satellite signal acquisition, GPS Navigation Message, GPS signal levels, GPS receiver operation, GPS C/A code accuracy, Differential GPS.

Raghu Engineering College (A)

Course Outcomes:

After successful completion of the course, the students can be able to:

S. No	Course Outcome	BTL
1.		L2
2.		L2
3.		L3
4.		L3
5.		L3
6.		L2

Correlation of COs with POs & PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1														
CO 2														
CO 3														
CO 4														
CO 5														
CO 6														

Text Books:

- 1. Satellite Communications Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, Wiley Publications, 2nd Edition, 2003.
- 2. Satellite Communications Engineering Wilbur L. Pritchard, Robert A Nelson and Henri G.Suyderhoud, 2nd Edition, Pearson Publications, 2003.

Reference Books:

- 1. Satellite Communications : Design Principles M. Richharia, BS Publications, 2nd Edition, 2003.
- 2. Satellite Communication D.C Agarwal, Khanna Publications, 5th Ed.
- 3. Fundamentals of Satellite Communications K.N. Raja Rao, PHI, 2004
- 4. Satellite Communications Dennis Roddy, McGraw Hill, 2nd Edition, 1996.