IV B.Tech – II Semester (17EC832) RADAR SYSTEMS (Professional Elective-IV)

Int. Marks Ext. Marks Total Marks

L T P C

40 60 100 4 - - 3

Pre-Requisites: Electromagnetic Waves and Transmission Lines, Antenna and Wave Propagation

Course Objectives:

- To provide an understanding of the basic concepts, operation, applications of radar systems
- To provide an understanding of the techniques necessary to analyze the performance of radar systems.

UNIT-I:

Basics of Radar: Introduction, Maximum Unambiguous Range, simple Radar range Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications. Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise, Illustrative Problems.

Radar Equation: Modified Radar Range Equation, SNR, probability of detection, probability of False Alarm, Integration of Radar Pulses, Radar Cross Section of Targets (simple targets - sphere, cone-sphere), Creeping Wave, Transmitter Power, PRF and Range Ambiguities, System Losses (qualitative treatment), Illustrative Problems.

UNIT-II:

CW and Frequency Modulated Radar : Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar. Illustrative Problems

FM-CW Radar: Range and Doppler Measurement, Block Diagram and Characteristics, FM-CW altimeter, Multiple Frequency CW Radar.

UNIT-III:

MTI and Pulse Doppler Radar: Introduction, Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, Nth Cancellation Staggered PRFs. Range Gated Doppler Filters. MTI Radar Parameters, Limitations to MTI Performance, MTI versus Pulse Doppler Radar.

UNIT-IV:

Tracking Radar: Tracking with Radar, Sequential Lobing, Conical Scan, Mono pulse Tracking Radar – Amplitude Comparison Mono pulse (one- and two- coordinates), Phase Comparison Mono pulse, Tracking in Range, Acquisition and Scanning Patterns, Comparison of Trackers.

UNIT-V:

Detection of Radar Signals in Noise: Introduction, Matched Filter Receiver – Response Characteristics and Derivation, Correlation detection and Cross-correlation Receiver, Efficiency of Non-matched Filters, Matched Filter with Non-white Noise, Noise Figure and Noise Temperature.

UNIT-VI:

Radar Receivers –Displays – types. Duplexers – Branch type and Balanced type, Circulators as Duplexers. Introduction to Phased Array Antennas – Basic Concepts, Radiation Pattern, Beam Steering and Beam Width changes, Series versus parallel feeds, Applications, Advantages and Limitations. Radomes.

Course Outcomes:

After successful completion of the course, the students can be able to:

S. No	Course Outcome	BTL
1.	Understand and classification of Radar Systems	L2
2.	Analyze the CW Radar and its characteristics	L3
3.	Analyze the MTI and Tracking Radar and its characteristics	L3
4.	Apply and to design required parameters of monopulse	L3
5.	Understand and analysis of noise in radar receivers	L2
6.	Understand of hardware equipment in radar receivers	L2

Correlation of COs with POs & PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	1	-	1	-	-	-	-	1	-	-	2	1
CO 2	3	3	2	-	2	-	-	-	-	ı	-	-	3	2
CO ₃	3	3	2	-	2	-	-	-	-	ı	-	-	2	-
CO 4	2	2	3	-	3	-	-	-	-	ı	-	-	3	-
CO 5	2	3	3	-	2	-	-	-	-	ı	-	2	3	2
CO 6	2	3	3	-	3	-	-	-	-	-	-	2	3	-

Text Books:

1. Introduction to Radar Systems – Merrill I. Skolnik, TMH Special Indian Edition, 2nd Ed., 2007.

Reference Books:

- 1. Introduction to Radar Systems, 3rd edition M.I. Skolnik, TMH Ed., 2005
- 2. Radar: Principles, Technology, Applications Byron Edde, Pearson Education, 2004.
- 3. Radar Principles Peebles, Jr., P.Z., Wiley, New York, 1998.
- 4. Principles of Modern Radar: Basic Principles Mark A. Richards, James A. Scheer, William A. Holm, Yesdee,
- 5. Radar Engineering GSN Raju, IK International.