IV B.Tech – I Semester (17EC733) WIRELESS SENSOR NETWORKS (Professional Elective-3)

Int. Marks	Ext. Marks	Total Marks	L	Т	Р	С
40	60	100	3	1	-	3

Pre-Requisites: Computer Networks, Digital Communications

Course Objectives:

- Study the basic concepts and functions of operating systems.
- Understand the structure and functions of OS.
- Learn about Processes, Threads, and Scheduling algorithms.
- Understand the principles of concurrency and Deadlocks.
- Learn various memory management schemes.

UNIT-I:

OVERVIEW OF WIRELESS SENSOR NETWORKS:

Key definitions of sensor networks, Advantages of sensor Networks, Unique constraints an challenges, Driving Applications, Enabling Technologies for Wireless Sensor Networks.

ARCHITECTURES:

Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture -Sensor Network Scenarios, Optimization Goals and Figures of Merit, Gateway Concepts.

UNIT-II:

NETWORKING Technologies:

Physical Layer and Transceiver Design Considerations, Personal area networks (PANs), hidden node and exposed node problem, Topologies of PANs, MANETs, WANETs.

UNIT-III:

MAC Protocols for Wireless Sensor Networks:

Issues in Designing a MAC protocol for Ad Hoc Wireless Networks, Design goals of a MAC Protocol for Ad Hoc Wireless Networks, Classifications of MAC Protocols, Contention - Based Protocols, Contention - Based Protocols with reservation Mechanisms, Contention – Based MAC Protocols with Scheduling Mechanisms, MAC Protocols that use Directional Antennas, Other MAC Protocols.

UNIT-IV:

ROUTING PROTOCOLS:

Introduction, Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks, Classification of Routing Protocols, Table –Driven Routing Protocols, On – Demand Routing Protocols, Hybrid Routing Protocols, Routing Protocols with Efficient Flooding Mechanisms, Hierarchical Routing Protocols, Power – Aware Routing Protocols, Proactive Routing

UNIT-V:

TRANSPORT LAYER AND SECURITY PROTOCOLS:

Introduction, Issues in Designing a Transport Layer Protocol for Ad Hoc Wireless Networks, Design Goals of a Transport Layer Protocol for Ad Hoc Wireless Networks, Classification of Transport Layer Solutions, TCP Over Ad Hoc Wireless Networks, Other Transport Layer Protocol for Ad Hoc Wireless Networks

UNIT-VI: SECURITY IN WSNs:

Security in Ad Hoc Wireless Networks, Network Security Requirements, Issues and Challenges in Security Provisioning, Network Security Attacks, Key Management, Secure Routing in Ad Hoc Wireless Networks.

SENSOR NETWORK PLATFORMS AND TOOLS:

Sensor Node Hardware – Berkeley Motes, Programming Challenges, Node-level software platforms, Node-level Simulators, State-centric programming.

APPLICATIONS of WSN:

S Ultra-wide band radio communication, Wireless fidelity systems. Future directions, home automation, smart metering Applications

Course Outcomes:

After successful completion of the course, the students can be able to:

S. No	Course Outcome					
1.	Understand different applications of Wireless Sensor Networks.					
2.	Analyze the architecture of a single node and Wireless Sensor Network.					
3.	Evaluate different communication protocols of wireless sensor networks in real-time applications.	L5				
4.	Design infrastructure establishment of wireless sensor networks.	L6				
5.	Apply the knowledge of sensor network platforms and tools for the development of wireless sensor networks.	L3				

Correlation of COs with POs & PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	-	1	-	2	2	3	-	-	-	-	-	1	3
CO 2	2	3	-	-	1	1	1	-	-	1	3	-	2	3
CO 3	3	3	2	-	-	-	-	-	-	-	1	-	-	3
CO 4	2	2	3	-	3	-	-	-	-	-	-	-	3	3
CO 5	2	-	2	-	3	-	1	-	-	-	-	-	2	3
CO6	3	-	1	-	2	2	3	-	-	-	-	-	1	3

Text Books:

- 1. Ad Hoc Wireless Networks: Architectures and Protocols C. Siva Ram Murthy and B.S.Manoj, 2004, PHI
- 2. Wireless Ad- hoc and Sensor Networks: Protocols, Performance and Control Jagannathan Sarangapani, CRC Press
- 3. Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.

Reference Books:

- 1. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks- Technology, Protocols, and Applications", John Wiley, 2007.
- 2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.
- 3. Ad- Hoc Mobile Wireless Networks: Protocols & Systems, C.K. Toh ,1 ed. Pearson Education.
- 4. Wireless Sensor Networks C. S. Raghavendra, Krishna M. Sivalingam, 2004, Springer
- 5. Wireless Sensor Networks S Anandamurugan, Lakshmi Publications