IV B.Tech – I Semester (17EC732) BIO-MEDICAL SIGNAL PROCESSING (Professional Elective-3)

Int. Marks	Ext. Marks	Total Marks		L	Т	Р	С
40	60	100		3	1	-	3

Pre-Requisites: Bio Medical Engineering, Digital Signal Processing

Course Objectives:

- Describe the origin, properties and suitable models of important biological signals such as ECG and EEG.
- Introduce students to basic signal processing techniques in analyzing biological signals.
- Develop the mathematical and computational skills relevant to the field of biomedical signal processing
- Develop a thorough understanding on the basics of ECG signal compression algorithms.
- Increase the student's awareness of the complexity of various biological phenomena and cultivate an understanding of the promises, and challenges of the biomedical engineering

UNIT-I: Neurological Signal Processing

The Brain and its potentials; The Electrophysiology origin of brain waves; the EEG Signal and its characteristics; EEG analysis; Linear prediction theory; The autoregressive (AR) method; Transient detection and elimination-the case of epileptic patients.

UNIT-II: Adaptive Filter and Algorithm

A Review of the Wiener filtering problem; Principle of an adaptive filter; Steepest – descent algorithm; Windrow-Hoff least –mean-square adaptive algorithm.

UNIT-III: Data Compression Techniques

Lossy and Lossless data reduction Algorithms. ECG data compression using Turning point, AZTEC, CORTES, Huffman coding, vector quantization, DICOM Standards.

UNIT-IV: Cardio logical Signal Processing

Pre-processing, QRS Detection Methods, Rhythm analysis, Arrhythmia Detection Algorithms, Automated ECG Analysis, ECG Pattern Recognition. Adaptive Noise Cancelling: Principles of Adaptive Noise Cancelling, Adaptive Noise Cancelling with the LMS Adaptation Algorithm, Noise Cancelling Method to Enhance ECG Monitoring, Fetal ECG Monitoring.

UNIT-V: Signal Averaging, Polishing

Mean and trend removal, Prony's method, Prony's Method based on the Least Squares Estimate, Linear prediction, Yule–Walker (Y–W) equations, Analysis of Evoked Potentials.

UNIT-VI: Neurological Signal Processing

Modeling of EEG Signals, Detection of spikes and spindles Detection of Alpha, Beta and Gamma Waves. Auto-Regressive (A.R.) modeling of seizure EEG. Sleep Stage analysis, Inverse Filtering, Least squares and polynomial modeling.

Course Outcomes:

After successful completion of the course, the students can be able to:

S. No	Course Outcome	BTL
1.	Understand the fundamental techniques & applications of digital signal processing	L2
1.	with an emphasis on biomedical signals.	
2.	Implement algorithms based on discrete-time signals	L3
3.	Understand circular and linear convolution and their implementation in DFT and	L2
	analyze signals.	
4.	Understand efficient computation techniques such as DIT and DIF FFT Algorithms.	L2
5.	Design FIR filters using digital IIR filters by designing prototype analog filters and	L6
	then applying analog to digital conversion	

Correlation of COs with POs & PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1					-	-	-	-	-	-	-			
CO 2					-	-	-	-	-	-	_			
CO 3					-	-	-	-	-	-	_			
CO 4					-	-	-	-	-	-	-			
CO 5					-	-	-	-	-	-	-			
CO6					-	-	-	-	-	-	-			

Text Books:

- 1. Reddy D C. "Modern Biomedical Signal Processing Principles and Techniques", New Delhi, 2005
- 2. Akay M. "Biomedical Signal Processing", Academic press, California, 1994.
- 3. Tompkins W J "Biomedical Signal Processing", Prentice hall of India, New Delhi, 1999.
- 4. Bronzino J D "The Biomedical Engineering handbook", CRC and Free press, Florida, 19

Reference Books:

- 1. Weitkunat R, "Digital Bio Dignal Processing", 1991, Elsevier.
- 2. Arnon Cohen "Biomedical Signal Processing" Crc Pr I Llc; 2nd edition, May, 2002.