III B.Tech – I Semester (17EC532) TELECOMMUNICATION SWITCHING SYSTEMS AND NETWORKS (Dept. Elective-I)

Int. Marks Ext. Marks Total Marks

40 60 100

L T P C 4 1 - 3

Pre-Requisites: Analog and Digital Communications

Course Objectives:

The student will

- Understand the means of measuring traffic.
- Understand the implication of the traffic level on system design.

UNIT-I: Introduction: Evolution of Telecommunications, Simple Telephone Communication, Basics of Switching System, Manual Switching System, Major Telecommunication Networks.

Crossbar Switching: Principles of Common Control, Touch Tone Dial Telephone, Principles of Crossbar Switching, Crossbar Switch Configurations, Cross point Technology, Crossbar Exchange Organization.

UNIT-II: Electronic Space Division Switching: Stored Program Control, Centralized SPC: Stand by mode, Synchronous duplex mode, Distributed SPC, Software Architecture, Application Software, Enhanced Services, Two-Stage Networks, Three-Stage Networks, n- Stage Networks.

UNIT–III: Time Division Switching: Basic Time Division Space Switching, Basic Time Division Time Switching, Generalized time division Space switch, Basic Time division time switching: modes of operation, simple problems, Time Multiplexed Space Switching, Time Multiplexed Time division space Switch, Time Multiplexed Time Switching, Combination Switching: Time Space (TS) Switching, Space-time (ST) Switching, Three-Stage Combination Switching, n- Stage Combination Switching.

UNIT-IV: Telephone Networks: Subscriber Loop System, Switching Hierarchy and Routing, Transmission Plan, Transmission Systems, Numbering Plan, Charging Plan, Signaling Techniques, Inchannel Signaling, Common Channel Signaling, CCITT Signaling System no.6, CCITT Signaling System no.7, **Packet Switching:** Statistical Multiplexing, Local- Area and Wide- Area Networks, Large-scale Networks, Broadband Networks.

UNIT-V: Switching Networks: Single- Stage Networks, Grading, Link Systems, Grades of service of link systems, Application of Graph Theory to link Systems, Use of Expansion, Call Packing, Rearrange-able Networks, Strict- Sense non-blocking Networks, Sectionalized Switching Networks

Telecommunications Traffic: The Unit of Traffic, Congestion, Traffic Measurement, A Mathematical Model, Lost-call Systems, Queuing Systems. Problems

UNIT-VI: Integrated Services Digital Network: Motivation for ISDN, New Services, Network and Protocol Architecture, Transmission Channels, User- Network Interfaces, Signaling, Numbering and Addressing, Service Characterization, Interworking, ISDN Standards, Expert Systems in ISDN, Broadband ISDN, Voice Data Integration.

Course Outcomes:

After successful completion of the course, the students can be able to:

S. No	Course Outcome							
1.	Evaluate the time and space parameters of a switched signal	L2						
2.	Establish the digital signal path in time and space, between two terminals	L1						
3.	Evaluate the inherent facilities within the system to test some of the SLIC,	L2						
	CODEC and digital switch functions.							
4.	Investigate the traffic capacity of the system.	L4						
5.	Evaluate methods of collecting traffic data.	L2						
6.	Evaluate the method of interconnecting two separate digital switches.	L2						

Correlation of COs with POs & PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	2	2				2						1	
CO 2	3	3	1	1										2
CO 3	2	2	3	2	2						2		1	
CO 4	2		1							2		2		2
CO 5	3	2					2	2						
CO 6	2		2			2	2		3	2	2		1	2

Text Books:

- 1. Telecommunication Switching Systems and Networks- Thiagarajan Viswanathan, 2000, PHI.
- 2. Telecommunications Switching, Traffic and Networks- J. E. Flood, 2006, Pearson Education.

Reference Books:

- 1. Digital Telephony- J. Bellamy, 2nd Edition, 2001, John Wiley.
- 2. Data Communications and Networks- Achyut S. Godbole, 2004, TMH.
- 3. Principles of Communication Ststems- H. Taub & D. Schilling, 2nd Edition, 2003, TMH.
- 4. Data Communication & Networking- B. A. Forouzan, 3rd Edition, 2004, TMH.
- 5. Telecommunication System Engineering Roger L. Freeman, 4th Ed., Wiley-Inter Science, John Wiley & Sons, 2004.