IV B.Tech – I Semester (17CS741) OPERATING SYSTEMS (Open Elective-1)

Int. Marks Ext. Marks Total Marks

L T P C

40 60 100 3 1 - 3

Pre-Requisites: Nil

Course Objectives:

- Study the basic concepts and functions of operating systems.
- Understand the structure and functions of OS.
- Learn about Processes, Threads, and Scheduling algorithms.
- Understand the principles of concurrency and Deadlocks.
- Learn various memory management schemes.
- Study I/O management and File systems.
- Learn the basics of Linux systems and perform administrative tasks on Linux Servers.

UNIT-I:

Introduction to Operating System Concept: Types of operating systems, operating systems concepts, operating systems services, Introduction to System call, System call types.

UNIT-II:

Process Management – Process concept, The process, Process State Diagram, Process control block, Process Scheduling - Scheduling Queues, Schedulers, Operations on Processes, Inter-process Communication, Threading Issues, Scheduling-Basic Concepts, Scheduling Criteria, Scheduling Algorithms.

UNIT-III:

Memory Management: Swapping, Contiguous Memory Allocation, Paging, structure of the Page Table, Segmentation Virtual Memory Management: Virtual Memory, Demand Paging, Page-Replacement Algorithms, Thrashing

UNIT-IV:

Concurrency: Process Synchronization, The Critical- Section Problem, Synchronization Hardware, Semaphores, Classic Problems of Synchronization, Monitors, Synchronization examples Principles of deadlock – System Model, Deadlock Characterization, Deadlock Prevention, Detection and Avoidance, Recovery form Deadlock

UNIT-V:

File system Interface- the concept of a file, Access Methods, Directory structure, File system mounting, file sharing, and protection. File System implementation- File system structure, allocation methods, free-space management Mass-storage structure overview of Mass-storage structure, Disk scheduling, Device drivers,

UNIT-VI:

Linux System: Components of LINUX, Interprocess Communication, Synchronization, Interrupt, Exception, and System Call. Android Software Platform: Android Architecture, Operating System Services, Android Runtime Application Development, Application Structure, Application Process management.

Course Outcomes:

After successful completion of the course, the students can be able to:

S. No	Course Outcome	BTL
1.	Design various Scheduling algorithms.	L6
2.	Apply the principles of concurrency.	L3
3.	Design deadlock, prevention and avoidance algorithms.	L6
4.	Compare and contrast various memory management schemes.	L2
5.	Design and implement a prototype file system	L6
6.	Perform administrative tasks on Linux Servers	L5
7.	Introduction to Android Operating System Internals	L3

Correlation of COs with POs & PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1					-	-	-	-	-	-	-			
CO 2					-	-	-	-	-	-	-			
CO ₃					-	-	-	-	-	-	-			
CO 4					-	-	-	-	-	-	-			
CO 5					-	-	-	-	-	-	-			
CO6					-	-	-	-	1	-	-			

Text Books:

- 1. Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin and Greg Gagne 9th Edition, John Wiley and Sons Inc., 2012.
- 2. Operating Systems Internals and Design Principles, William Stallings, 7th Edition, Prentice Hall, 2011.
- 3. Operating Systems-S Halder, Alex A Aravind Pearson Education Second Edition 2016.

Reference Books:

- 1. Modern Operating Systems, Andrew S. Tanenbaum, Second Edition, Addison Wesley, 2001.
- 2. Operating Systems: A Design-Oriented Approach, Charles Crowley, Tata Mc Graw Hill Education", 1996.
- 3. Operating Systems: A Concept-Based Approach, D M Dhamdhere, Second Edition, Tata Mc Graw-Hill Education, 2007.