III B.Tech – II Semester (17CS612) DATA WARE HOUSING AND DATA MINING LAB

Int. Marks Ext. Marks Total Marks

L T P C

60 40 100

- - 3 2

Pre-Requisites: Data Base Management System, Data Base Management System Lab

Course Objectives:

- Practical exposure on implementation of well known data mining tasks.
- Exposure to real life data sets for analysis and prediction.
- Learning performance evaluation of data mining algorithms in a supervised and an unsupervised setting.
- Handling a small data mining project for a given practical domain.

System/Software Requirements:

- · Intel based desktop PC
- · WEKA TOOL
- 1. Demonstration of preprocessing on dataset student.arff
- 2. Demonstration of preprocessing on dataset labor.arff
- 3. Demonstration of Association rule process on dataset contactlenses.arff using apriori algorithm
- 4. Demonstration of Association rule process on dataset test.arff using apriori algorithm
- 5. Demonstration of classification rule process on dataset student.arff using j48 algorithm
- 6. Demonstration of classification rule process on dataset employee.arff using j48 algorithm
- 7. Demonstration of classification rule process on dataset employee. arff using id3 algorithm
- 8. Demonstration of classification rule process on dataset employee, arff using naïve bayes algorithm
- 9. Demonstration of clustering rule process on dataset iris. arff using simple k-means
- 10. Demonstration of clustering rule process on dataset student. arff using simple k- means.

Project:

- 1. Data mining for weather prediction and climate change studies..
- 2. Knowledge /information extraction from decision trees using data mining.
- 3. Mining of government data for getting valuable information. Sensex data
- 4. Mining of excess sheet data
- 5. Mining of customer behaviour of any retail shop.
- 6. Crime/fraud detection using data mining.
- 7. Market basket analysis (Apriori algorithm) for mining association rule

Course Outcomes:

CO-1	Demonstrate data pre-processing techniques.	L3
CO-2	Implement association rule mining in WEKA.	L4
CO-3	Implement classification rule process in WEKA.	L4
CO-4	Implement clustering rule process in WEKA.	L4

Correlation of COs with POs & PSOs:

	00110100101101101101010110101														
	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PSO-	PSO-	PSO-
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	2	3	3	2	3	-	-	-	-	-	-	-	-	2	-
CO-2	2	3	3	3	3	-	-	-	-	-	-	-	-	2	-
CO-3	2	3	2	2	3	-	-	-		-	-	1	-	2	-
CO-4	2	3	2	3	3	-	-		-	_	-	1	-	2	-