III B.Tech – I Semester (17CS502) DESIGN AND ANALYSIS OF ALGORITHMS

 Int. Marks
 Ext. Marks
 Total Marks

 40
 60
 100

 3
 1

 3
 1

Pre-Requisites: Discrete Structures, Data Structures

Course Objectives:

Upon completion of this course, students will be able to do the following:

- Analyze the asymptotic performance of algorithms.
- Write rigorous correctness proofs for algorithms.
- Demonstrate a familiarity with major algorithms and data structures.
- Apply important algorithmic design paradigms and methods of analysis.
- Synthesize efficient algorithms in common engineering design situations

UNIT-I:

Introduction: Examples and motivation, Asymptotic complexity: informal concepts, formal notation, examples

Searching and Sorting: binary search, insertion sort, selection sort, merge sort, quick sort, stability and other issues.

UNIT-II:

Graphs: Motivation, Directed acyclic graphs, Graph exploration: BFS, DFS, applications.

UNIT-III:

Search Trees: Introduction, Traversals, insertions, deletions, Balancing, Priority queues, heaps

UNIT-IV:

Greedy: Interval scheduling, Minimum cost spanning trees: Prim's algorithm, Kruskal's Algorithm, Shortest paths: unweighted and weighted, Single source shortest paths: Dijkstra, Huffman coding.

UNIT-V:

Dynamic Programming: weighted interval scheduling, memorization, 0/1 knapsack, Travelling Salesman Problem, matrix chain multiplication, shortest paths: Bellman Ford, Floyd, Warshall.

UNIT-VI:

Backtracking: The General Method, The 8-Queens Problem, Sum of Subsets, Graph Coloring , Hamiltonian Cycles.

Course Outcomes:

1	Apply searching and sorting techniques to solve various problems.	L3
2	Apply the concepts of graph theory.	L3
3	Apply the concepts of tress in various applications.	L3
4	Analyze minimum cost spanning tree, shortest path problems.	L4
5	Apply dynamic programming technique to various problems.	L3
6	Apply backtracking technique to various problems.	L3

Correlation of COs with POs & PSOs:

	PO-	PSO-	PSO-	PSO-											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	2	2	2	1	1	-	-	-	-	-	-	-	3	-	-
CO-2	3	3	2	2	2	-	-	-	-	-	-	-	3	-	-
CO-3	3	3	3	3	3	-	-	-	-	-	-	-	3	-	-
CO-4	3	3	3	3	3	-	-	-	-	-	-	-	3	-	_
CO-5	3	3	3	3	3	-	-	-	-	-	-	-	3	-	-
CO-6	3	3	3	3	3	-	-	ı	-	-	-	-	3	1	-

Text Books:

- 1. Fundamentals of computer algorithms E. Horowitz S. Sahni, University Press
- 2. Introduction to Algorithms Thomas H. Cormen, PHI Learning

Reference Books

- 1. The Design and Analysis of Computer Algorithms, Alfred V. Aho, John E. Hopcroft, Jeffrey D.Ullman
- 2. Algorithm Design, Jon Kleinberg, Pearson.