II Year-I Semester (20MA3004) NUMERICAL TECHNIQUES and PARTIAL DIFFERENTIAL EQUATIONS (CE and ME)

Int. Marks	Ext. Marks	Total Marks		L	Т	Р	С
30	70	100		3	-	-	3

Pre- Requisites: None

Course Objectives:

- The course is designed to equip the students with necessary mathematical skills and techniques that are essential for an engineering course.
- The skills derived from the course will help the student from a necessary base to develop analytic and design concepts.

UNIT-I:

Iterative methods: Introduction – Bisection method – Secant method – Method of false position – Iteration method – Newton-Raphson method

UNIT-II:

Interpolation: Introduction– Finite differences – Forward differences – Backward differences – Central differences – Relations between operators – Newton's forward and backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula

UNIT-III:

Numerical integration and solution of ordinary differential equations: Trapezoidal rule – Simpson's 1/3rd and 3/8th rule – Solution of ordinary differential equations by Taylor's series – Picard's method of successive approximations – Euler's method – Runge -Kutta method (second and fourth order).

UNIT-IV:

PDE of first order: Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

UNIT-V:

Linear PDE of higher order and its Applications: Solutions of Homogeneous linear partial differential equations of higher order. Method of separation of variables, Classification of second order partial differential equations

Applications of PDE: Application of PDE to one-dimensional wave, heat and Two- dimensional Laplace's equation in Cartesian coordinates.

Course Outcomes:

At the end of the semester/course, the student will be able to have a clear knowledge on the following:

	COURSE OUTCOMES	BTL
CO1	Determine the numerical solution of the algebraic and transcendental equations.	1, 2, 3
CO2	Determine interpolation techniques for data analysis.	1, 2, 3
CO3	Determining the numerical solutions of the ordinary differential equations.	1, 2, 3
CO4	Develop the ability to form partial differential equations and solve the partial differential equations of first order.	1, 2, 3
CO5	Identify / Classify and Solve the Partial differential equations of second order and higher order.	1, 2, 3

Raghu Engineering College (A)

AR20 Regulation

CO – PO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	3	3	-	3	-	-	-	-	2	-	-	1
2	2	2	-	2	-	-	-	-	2	-	-	1
3	2	3	-	-	-	-	-	-	-	-	-	1
4	2	2	-	1	-	-	-	-	-	-	-	1
5	1	2	-	1	-	-	-	-	-	_	_	1

CO – PSO Mapping

		CE	ME			
СО	PSO1	PSO2	PSO3	PSO1	PSO2	
1	-	-	2	1	-	
2	-	-	2	1	-	
3	-	-	2	1	-	
4	-	-	2	1	-	
5	-	-	2	1	-	

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books

- 1. Advanced Engineering Mathematics: Erwin Kreyszig, Wiley India Edition.
- 2. Advanced Engineering Mathematics: Michael Greenberg, Pearson.

Web Link:

- <u>https://nptel.ac.in/courses/111/107/111107105/</u>
- <u>https://nptel.ac.in/courses/111/103/111103021/</u>