III Year-II Semester (20CE6646) Advanced Fluid Mechanics

Int. Marks	Ext. Marks	Total Marks	L	Т	Р	С
30	70	100	3	-	-	3

Pre- Requisites: Fundamentals of Fluid Mechanics

UNIT-I:

Kinematics of Flow: Description of fluid motion - Lagrangian and Eulerian approaches, Equations of continuity, energy and linear momentum in Cartesian and polar coordinates, Standard 2D Flow Patterns: Uniform flow, Source, sink, vortex, doublet and their combinations, D'Alembert's paradox

UNIT-II:

Laminar Flow: Derivation of Navier-Stokes equations – exact solutions for flow between parallel plates, Hagen Poisulle flows, Couette flow, velocity, shear stress and pressure distribution, flow near a suddenly accelerated plate and an oscillating plate.

UNIT-III:

Boundary Layers: Boundary layer equations, Boundary layer thickness boundary layer on a flat plate, similarity solutions, Integral form of boundary layer equations, Separation in boundary layer under adverse pressure gradient, turbulent boundary layer.

UNIT-IV:

Turbulent Flows: Reynolds equations of motion, semi-empirical theories of turbulence, Prandtl mixing length, velocity profiles for inner, outer and overlap layers, shear stress and pressure distribution, equilibrium boundary layers.

UNIT-V:

Hydraulic transients : Basic concepts- transient flow equation, transient in pumping systems, transient in hydroelectric power plants, cavitation, water hammer, surges and their protection works.

S.No	Course Outcomes		
	Basic concepts of mathematical and physical background to analyze real life		
1	problems in fluidmechanics		
2	Understanding of possess skills to take up research activities involving fluidmotions	L2	
3	Develop the boundary layer concept on fluid motion	L5	
4	Analyze the irregular fluid in motion	L4	
5	Explain about the basic concept of Hydraulic Transients	L2	

Course Outcomes:

Reference Books:

- 1. Foundations of Fluid Mechanics by S W YUAN
- 2. Fluid Mechanics by White
- 3. Fluid Mechanics by Hunter and Rose
- 4. Fluid Mechanics by C S P Ojhha
- 5. Boundary layer theory by Schlichting H
- 6. Applied Hydraulics of pumps by Tullis, Hydraulic Transients by Hanif Choudhary