III Year-II Semester (20CE6113) Soil Mechanics Lab

Int. Marks	Ext. Marks	Total Marks		L	Т	Р	С
15	35	50		-	-	3	1.5

Pre- Requisites: Fundamentals of geotechnical engineering

Course Objectives:

- To impart knowledge of determination of index properties required for classification of soils.
- To teach how to determine compaction characteristics and consolidation behavior from relevant lab tests; to determine permeability of soils.
- To teach how to determine shear parameters of soil through different laboratory tests.

LIST OF EXPERIMENTS

- 1. Specific gravity, G
- 2. Atterberg's Limits.
- 3. Field density-Core cutter and Sand replacement methods
- 4. Grain size analysis by sieving
- 5. Hydrometer Analysis Test
- 6. Permeability of soil Constant and Variable head tests
- 7. Compaction test
- 8. Consolidation test (to be demonstrated)
- 9. Direct Shear test
- 10. Triaxial Compression test (UU Test)
- 11. Unconfined Compression test
- 12. Differential free swell (DFS)
- 13. CBR Test

At least **Ten E**xperiments shall be conducted.

LIST OF EQUIPMENT:

- 1. Casagrande's liquid limit apparatus.
- 2. Apparatus for plastic and shrinkage limits
- 3. Field density apparatus for
 - a) Core cutter method
 - b) Sand replacement method
- 4. Set of sieves: 4.75mm, 2mm, 1mm, 0.6mm, 0.42mm, 0.3mm, 0.15mm, and 0.075mm.
- 5. Hydrometer
- 6. Permeability apparatus for
 - a) Constant head test
 - b) Variable head test
- 7. Universal auto compactor for I.S light and heavy compaction tests.
- 8. Shaking table, funnel for sand raining technique.
- 9. Apparatus for CBR test
- 10. 10 tons loading frame with proving rings of 0.5 tons and 5 tons capacity
- 11. One dimensional consolation test apparatus with all accessories.
- 12. Triaxial cell with provision for accommodating 38 mm dia specimens.
- 13. Box shear test apparatus
- 14. Hot air ovens (range of temperature 500 1500C

Course Outcomes:

S.No	COURSE OUTCOMES						
1	Determine Specific Gravity, Atterberg's limits and Differential free swell for clayey	L4					
	soils						
2	Determine relative density, dry density & moisture contents in the field and laboratory						
3	Determine permeability and analyze coarse and fine grain sizes	L4					
4	Determine shear strength and shear strength parameters by vane shear, tri-axial, direct	L4					
	shear & unconfined compression tests						
5	Determine CBR value and consolidation settlement & swell pressure in laboratory	L4					

Correlation of Cos with POs & PSOs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	3	1	-	-	-	1	1	-	2	-	2	3
CO2	3	2	-	3	1	-	-	-	1	1	-	2	-	2	3
CO3	3	2	-	3	1	-	-	-	1	1	-	2	-	2	3
CO4	3	2	-	3	1	-	-	-	1	1	-	2	-	2	3
CO5	3	2	-	3	1	-	-	-	1	1	-	2	-	2	3

Reference:

- 1. Determination of Soil Properties, J. E. Bowles.
- 2. IS Code 2720 relevant parts.