III Year-I Semester (20CE5764) Introduction to Structural Analysis

Int. Marks	Ext. Marks	Total Marks	L	T	P	C
30	70	100	3	-	_	3

Pre- Requisites: Fundamentals of Engineering Mechanics

Course Objectives:

- To impart concepts of Bending Moment and Shear force for beams with different boundary and loading conditions and to draw the diagrams of variation across the length.
- To give preliminary concepts of assessment of bending moment and shear force in Propped cantilevers, fixed beams and continuous beams due to various loading conditions.
- The concepts above will be utilized in measuring deflections in beams under various loading and support conditions

UNIT-I: Shear Force And Bending Moment:

Definition of beam - Types of beams - Concept of shear force and bending moment - S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, u.d.l., uniformly varying loads and combination of these loads - Point of contraflexure - Relation between S.F., B.M and rate of loading at a section of a beam.

UNIT-II: Deflection of Beams:

Bending into a circular arc – slope, deflection and radius of curvature – Differential equation for the elastic line of a beam – Double integration and Macaulay's methods – Determination of slope and deflection for cantilever and simply supported beams subjected to point loads, - U.D.L. Uniformly varying load. Mohr's theorems – Moment area method – application to simple cases including overhanging beams.

UNIT-III: Propped Cantilevers:

Analysis of propped cantilevers-shear force and Bending moment diagrams-Deflection of propped cantilevers.

UNIT-IV: Fixed Beams:

Introduction to statically indeterminate beams with U. D. load, central point load, eccentric point load, number of point loads, uniformly varying load, couple & combination of loads - shear force and Bending moment diagrams-Deflection of fixed beams including effect of sinking of support, effect of rotation of a support.

UNIT-V: Continuous Beams:

Introduction-Clapeyron's theorem of three moments- Analysis of ontinuous beams with constant moment of inertia with one or both ends fixed continuous beams with overhang, continuous beams with different moment of inertia for different spans-Effects of sinking of supports-shear force and Bending moment diagrams.

Course Outcomes:

S.No	Course Outcomes					
	Draw the diagrams indicating the variation of the key performance features like					
1	bending moment and shear forces.					
	The student will be able to assess the deflections across the length of the beams using					
2	various methods					
	Distinguish between the determinate and indeterminate structures and calculate the					
3	fixed end moments of fixed beams.					
	Estimate the bending moment and shear forces in beams for different fixity	L4				
4	conditions					
5	Analyze the continuous beams using three moment theorem.					

Text Books:

- 1. Basic Structural Analysis by C. S. Reddy Tata Mc.Graw-Hill, New Delhi.
- 2. Analysis of Structures by T.S. Thandavamoorthy, Oxford University Press, New Delhi
- 3. Analysis of Structures- Vol. I and II by V. N. Vazirani and M. M. Ratwani, Khanna Publishers, New Delhi

Reference Books:

- 1. Theory of Structures by B. C Punmia, A. K Jain & Arun K. Jain, Lakshmi Publications
- 2. Theory of Structures by R.S. Khurmi, S. Chand Publishers.
- 3. Structural analysis by R.C. Hibbeler, Pearson, New Delhi.
- 4. Structural Analysis-I by Hemanth Patel, Yogesh Patel, Synergy Knowledgeware, Mumbai
- 5. Analysis of Statically Determinate Structures by P. N. Chandramouli, Yesdee Publishing Pvt Limited, Chennai