III Year-I Semester (20CE5640) Advanced Foundation Engineering

 Int. Marks
 Ext. Marks
 Total Marks

 30
 70
 100
 3 - - 3

Pre- Requisites: Fundamentals of Geotechnical Engineering

Course Objectives:

The objectives of this course are:

- To enable the student to appreciate how Meyerhof's general bearing capacity equations are important
- To teach the student special methods of computation of settlements and the corrections to be applied to settlements.
- To enable the student to understand the advanced concepts of design of pile foundations.
- To teach the student the problems posed by expansive soils and the foundation practices appropriate to expansive soils.
- To enable the student to learn the difference between isolated and combined footings, the determination of bearing capacity of mats and proportioning of footings.

UNIT-I:

Bearing capacity of Foundations using general bearing capacity equation – Meyerhof's, Brinch Hansen's and Vesic's methods.

UNIT-II:

Settlement analysis: Immediate settlement of footings resting on granular soils – Schmertmann& Hartman method – De Beer and Martens method – Immediate settlement in clays – Janbu's method – correction for consolidation settlement using Skempton and Bjerrum's method – Correction for construction period.

UNIT-III:

Mat foundations – Purpose and types of isolated and combined footings – Mats/ Rafts – Proportioning of footings – Ultimate bearing capacity of mat foundations – allowable bearing capacity of mats founded in clays and granular soils – compensated rafts.

UNIT-IV:

Earth-retaining structures – cantilever sheet piles – anchored bulkheads – fixed and free earth support methods – design of anchors – braced excavations – function of different components – forces in ties – stability against bottom heave.

UNIT-V:

Pile foundations – single pile versus group of piles – load-carrying capacity of pile groups – negative skin friction (NSF) -settlement of pile groups in sands and clays – laterally loaded piles in granular soils – Reese and Matlock method – laterally loaded piles in cohesive soils – Davisson and Gill method – Broms' analysis.

Course Outcomes:

S.No	Course Outcomes	BTL
	Compute the safe bearing capacity of footings subjected to vertical and inclined	L4
1	loads.	
	Understand the advanced methods of settlement computations and proportion	L2
2	foundation footings.	
	Appreciate the methods of computing the pull-out capacity and negative skin friction	L5
3	of piles and compute the settlements of pile groups in clays.	
	Appreciate the problems posed by expansive soils and the different foundation	L5
4	practices devised.	
	Appreciate the difference between isolated footings and combined footings and mat	L5
5	foundations	

Text Books:

- 1. 'Basic and applied soil mechanics' by GopalRanjan and ASR Rao, New Age Publishers.
- 2. 'Soil Mechanics and Foundation Engineering' by VNS Murthy, CBS Publishers.
- 3. 'Principles of Foundation Engineering' by BM Das, Thomson Brooks/Cole.

Reference Books:

- 1. 'Foundation Analysis and Design' by JE Bowles, John Wiley.
- 2. 'Foundation Design' by WC Teng, Prentice Hall Publishers.