III Year-I Semester (20CE5314) Engineering Hydrology (For CE)

Int. Marks Ext. Marks Total Marks

L T P C

30 70 100 3 - - 3

Pre- Requisites: Probability & Statistics

Course Objectives:

- Introduce hydrologic cycle and its relevance to Civil engineering.
- Make the students understand physical processes in hydrology and components of the hydrologic cycle.
- Provide an overview and understanding of Unit Hydrograph theory and its development.
- Understand flood frequency analysis, design flood, flood routing.
- Appreciate the concepts of groundwater movement and well hydraulics.

UNIT I:

Introduction: Engineering hydrology and its applications, Hydrologic cycle, hydrological data-sources of data

Precipitation: Types and forms, measurement, rain gauge network, presentation of rainfall data, average rainfall, continuity and consistency of rainfall data, frequency of rainfall, Intensity-Duration-Frequency (IDF) curves, Depth-Area-Duration (DAD) curves, Probable Maximum Precipitation (PMP), design storm

UNIT-II:

Abstractions from Precipitation: Initial abstractions. **Evaporation**: factors affecting, measurement, reduction **Evapo transpiration**: factors affecting, measurement, control

Infiltration: factors affecting, Infiltration capacity curve, measurement, infiltration indices.

Runoff: Catchment characteristics, Factors affecting runoff, components, computation- empirical formulae, tables and curves, stream gauging, rating curve, flow mass curve and flow duration curve.

UNIT-III:

Hydrograph analysis: Components of hydrograph, separation of base flow, effective rainfall Hyetograph and direct runoff hydrograph, unit hydrograph, assumptions, derivation of unit hydrograph, unit hydrographs of different durations, Principle of Superposition & S- Hydrograph methods, limitations and applications of unit hydrograph, Synthetic unit hydrograph.

Rainfall-runoff Modelling, instantaneous unit hydrograph (IUH) - conceptual models - Clark and Nash models, general hydrological models.

UNIT-IV:

Floods: Causes and effects, frequency analysis- Gumbel's and Log-Pearson type III distribution methods, Standard Project Flood (SPF) and Probable Maximum Flood (MPF), flood control methods and management.

Flood Routing: Hydrologic routing, channel and reservoir routing-Muskingum and Puls methods of routing.

UNIT-V:

Groundwater: Occurrence, Types of aquifers, aquifer parameters, porosity, specific yield, permeability, transmissivity and storage coefficient, types of wells, Darcy's law, Dupuit's equation- steady radial flow to wells in confined and unconfined aquifers, yield of a open well-recuperation test.

Course Outcomes:

S.No.	Course Outcomes						
1	Understand the theories and principles governing the hydrologic processes.	L2					
	Quantify major hydrologic components and apply key concepts to several practical	L3					
	areas of engineering hydrology and related design aspects.						
2							
	Develop Intensity-Duration-Frequency and Depth-Area Duration curves to design	L3					
	hydraulic structures.						
3							
	Recommend proper flood control method and carry out frequency analysis.	L5					
4							
	Determine aquifer parameters and yield of wells.	L4					
5							

Correlation of Cos with POs & PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	3	3	1	1	1	2	2	3	1	1
CO2	3	3	2	3	2	3	3	1	1	1	1	3	3	2	2
CO3	3	3	2	3	3	2	3	1	3	3	2	3	3	2	2
CO4	3	3	3	3	3	3	3	1	3	3	3	2	3	3	1
CO5	3	3	3	3	3	3	3	2	2	3	3	2	3	3	3

Text Books:

- 1. Engineering Hydrology, Jayarami Reddy, P., Laxmi Publications Pvt. Ltd., (2013), New Delhi
- 2. Irrigation and Water Power Engineering, B. C. Punmia, Pande B. B. Lal, Ashok Kumar Jain and Arun Kumar Jain, Lakshmi Publications (P) Ltd.
- 3. Engineering Hydrology Subramanya K, Tata McGraw-Hill Education Pvt Ltd, (2013), New Delhi

Reference Books:

- 1. Irrigation Engineering and Hydraulic Structure, Santosh Kumar Garg, Khanna Publishers.
- 2. Applied hydrology, Chow V. T., D. R Maidment and L.W. Mays, Tata McGraw Hill Education Pvt Ltd, (2011), New Delhi.
- 3. Water Resources Engineering, Mays L.W, Wiley India Pvt. Ltd, (2013).