III Year-I Semester (20CE5108) Environmental Engineering Lab

 Int. Marks
 Ext. Marks
 Total Marks

 15
 35
 50

 3
 1.5

Pre- Requisites: Environmental Engineering Theory

Course Objectives:

- Estimation some important characteristics of water and wastewater in the laboratory
- It also gives the significance of the characteristics of the water and wastewater

List of Experiments

- 1. Determination of pH and Electrical Conductivity (Salinity) of Water and Soil.
- 2. Determination and estimation of Total Hardness–Calcium & Magnesium.
- 3. Determination of Alkalinity/Acidity
- 4. Determination of Chlorides in water and soil
- 5. Determination and Estimation of total solids, organic solids and inorganic solids and settleable solids by Imhoff Cone.
- 6. Determination of Iron.
- 7. Determination of Dissolved Oxygen with D.O. Meter & Wrinklers Method and B.O.D.
- 8. Determination of N, P, K values in solid waste
- 9. Physical parameters Temperature, Colour, Odour, Turbidity, Taste.
- 10. Determination of C.O.D.
- 11. Determination of Optimum coagulant dose.
- 12. Determination of Chlorine demand.
- 13. Presumptive Coliform test.

NOTE: At least 10 of the above experiments are to be conducted.

List of Equipments

- 1. pH meter
- 2. Turbidity meter
- 3. Conductivity meter
- 4. Hot air oven
- 5. Muffle furnace
- 6. Dissolved Oxygen meter
- 7. U–V visible spectrophotometer
- 8. COD Reflux Apparatus
- 9. Jar Test Apparatus
- 10. BOD incubator
- 11. Autoclave
- 12. Laminar flow chamber
- 13. Hazen's Apparatus

Course Outcomes:

S.No	COURSE OUTCOMES	BTL
1	Estimate some important characteristics of water and wastewater in the laboratory	L3
2	Draw some conclusions and decide whether the water is potable or not	L5
3	Decide whether the water body is polluted or not with reference to the standards	L5
4	Estimate the strength of sewage in terms of BOD and COD	L4
5	Determine the Optimum coagulant dose	L4

Correlation of Cos with POs & PSOs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	3	1	2	3	3	2	2	2	2	-	3	2
CO2	2	2	-	3	1	2	3	3	2	2	2	2	-	3	2
CO3	2	2	-	3	1	2	3	3	2	2	2	2	-	3	2
CO4	2	2	-	3	1	2	3	3	2	2	2	2	-	3	2
CO5	2	2	-	3	1	2	3	3	2	2	2	2	-	3	2

Text Books:

- 1. Standard Methods for Analysis of Water and Waste Water APHA
- 2. Chemical Analysis of Water and Soil by KVSG Murali Krishna, Reem Publications, New Delhi

Reference Books:

- 1. Relevant IS Codes.
- 2. Chemistry for Environmental Engineering by Sawyer and Mc. Carty